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The use of paramagnetic centers, either native or artificial, to o1 62 3 0405 g Seheme A
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assess structural and dynamic properties of biomolecules is quite N | 11 - bl Ty
fashionable in contemporary biomolecular NMR(ithin the quest 1 S, i‘ | L e le
for paramagnetism-based NMR structural constr&imsss cor- : — i j J
relation rates betweetH Curie spin relaxatiohand*H—X (X = . AA Sohama
1H, 15N, or 13C) dipole—dipole coupling [{is°° hereafter) are a 2 B o Mol
. . ’ . 1 o HaNZ H
powerful source of information, to date largely unexploited. s A N b f

Discovered since a decddand, since then, studied by several
groups;~8 they have been used, in the case of cross correlation
rates betweefHy Curie spin and HN dipoledipole coupling, as
long-range constraints to refine macromolecular structuaed to B P
obtain structures without NOEsThey have been proven to be  Figure 1. Pulse scheme for quantitatiié,nx measurements. The gray
strongly synergistic to residual dipolar couplings and pseudocontactPulse is applied only in the reference experiment (Scheme B). All pulses
shifts, and they have been already implemented within the most 2’;“’2 pltg(sgl'é‘/”'fg(s_')r(')d'iaetf_d}})l?ggsggh:%g/’é; ixéyZ(l_g()ii)g (ng_eyTe
common programs for structure calculatibdsie to their distance 16 ¢4 = 16(-x), 16y, 16x, 16(-y); ¢5 = —x ¢6 = X, X, ¢7 = 4x,

and angular dependence shown in eq 1 4(—x); $8 = 8x, 8(—x); receiver= 2(x,—x), 2(—x,X). (B) Coherence transfer
functions due to: (a) scalar coupling coherence transfer, (b) relaxation
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cuiepp _ K 2 allowed coherence transfer and (c) self-relaxation decay as a function of
FH,HN - _3(3 cos 6 — 1) (1) the transfer delay\. Self-relaxation equally affects both SCCT and RACT.
MH Simulation curves were obtained with= 1000 s,y =20 s%, J =94
Hz.1° The evolution of coherence transfer in the two schemes from point a
where M refers to the metal io#, is the angle between the H is also shown.

and H-N (or H—C) vectors, an&K depends on the magnetic field
and on the electron spi&l° I'S41eP° behave as the well-known The same principle could be used when the coherence transfer

diamagnetic cross correlation rates betwéehchemical shift occurs through relaxation interference. The scheme is reported in
anisotropy (CSA) and HN dipole coupling rﬁi‘k.DD)“ such that, Figure 1A. Because RACT is expected to be less efficient than

in paramagnetic molecules, the experimentally observable quantity SCCT, we exploit scalar coupling for the+X transfer, and we
Thpn i given by® allow cross correlation to evolve only in the back transfer step from
X to H via a CRIPT-type building bloék-*8during which BN is
converted to Klvia RACT. Prior to detection, afilter is added to
select only signals arising from the wanted coherence transfer. A
Until now T541e5°° values in paramagnetic systems have been 90° change in the phase of the first proton pulse of thetX
collected using the same pulse sequefitedesigned to detect coherence transfep8, in Figure 1A) and the insertion of a 180
TSSAPP When these sequences are applied to paramagneticrefOCUSinglsN .pl.J|Se (gray-.coloreq,. in Figure 1A) will transform
systems, fast transverse self-relaxation quenches the build-up ofth® RACT building block in a trivial reverse INEPT step, thus
relaxation allowed coherence trandfefRACT) and prevents the  allowing, via a transfer kN, — Hy, to acquire a reference spectrum
detection of coherences arising from fast reladHgsignals close  for quantitative analysis of RACT. The use o aoupling evolution
to the paramagnetic centéti4 There is therefore the need to period for referencing the .cross-fzorrelated transfer is, to our
develop alternative routes to measii¥gx in which RACT could knowledge, unprecedented in the literature. _
be detected before being quenched by self-relaxation. We present AS long as the evolution delay/2is shorter thart/,J, the time
here a modified version of an HSQC experiment, designed to dependence of both SCCT and RACT is linear (Figure PEelf-
observe and quantify cross correlation rates in those cases in whictf€laxation will equally affect the time dependence of SCCT and
standard pulse sequences fail to detect a RACT peak. _RACT.19 As a consequence, the_ ratio between intensities cqllected
When XH groups in spatial proximity of a paramagnetic center i @ RACT experiment and in a SCCT experiment will be
are studied via a conventional HSQC experiment, the scalar independent from the gvolutlon deIAyaUd related to the absolute
coupling coherence transfer (SCCT hereafter) from H to X and Value ofI" (expressed in hertz) according to eq 3
vice versa is quenched because of paramagnetic inddided

__ 1~CSADD CurieDD
Fimn =Tain + Thmn @

transverse relaxatio®.To overcome this problem, transfer delays lract/lsccr= — T3 )

in HSQC experiments tailored to paramagnetic signals are not

optimized to the maximum of SCCT functiéhlndeed, the kX, On this basis, two experiments, performed with very skort

(X being 1C or *N) coherence has to evolve only for very short delays, provide a direct measurementRﬁﬁjﬁDD even for those
delays to avoid the loss of information duelte self-relaxatiorf. peaks which are strongly affected by the paramagnetic center.
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calculation of the anisotropy tensor of the molecule. As a
consequence, even a single value can be converted into a
structural constraint without any loss in reliability.
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Figure 2. 700 MHz H—1N (A) and H—13C (C) RACT spectra of
CaCeCb, obtained with the proposed sequence and corresponding reference
spectra (B) and (D). All peaks which are strongly affected by the hyperfine
interaction but are still observable in the HSQC experiments, shown a peak
in the RACT experiments. The experiments have been carried out, using a
Bruker 700 MHz Avance Spectrometer, on a 1.2 mM protein sample, at
unbuffered pH= 6 at 300 K. For'lH—13C experiments delays durations
were: recycle delay= 450 ms,0 = 800 us, A = 1.2 ms. For'H—15N
experiments delays were: recycle delay450 ms,0 = 1ms,A = 1 ms.
Experimental conditions are reported in ref 22. In both cases experiments
were performed using values from 0.8 to 1.2 ms .

Because eq 3 does not dependigrdifferent choices foA allows
to assess the accuracy of the approach.

Test experiments are reported for fi€,1°N-labeled di-calcium
binding protein calbindin B2°in which a C&" ion is replaced by
Ce** (CaCeCb). As previously showhamide groups of residues
Asp 58 and Gly 59 are paradigmatic cases of HN pairs strongly
affected by the hyperfine interaction. Indeed, peaks corresponding
to Asp 58 and Gly 59, which were completely unobserved when
measuring cross correlation rates using the standard se§uaece
now detected in the RACT experiment, as shown in Figure 2, A
and B. Overall, 63y 4y Values were obtained (Table S1). They
are in a very good agreement withy yn values obtained using
standard pulse sequencégven for those signals for whidhy p
values arise entirely froniyj ;" (Figure S1).

This method can be fruitfully extended to cross correlation rates
involving 'H Curie spin relaxation and €H dipole—dipole
coupling C511e°°). Thpc involving H CSA and G-H dipole—
dipole coupling have never been reported. UniKgin"°, they
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